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Abstract

As a rule, solids display nonlinearity during loading in the relation between strains and stresses. Deviations from
Hooke’s linear constitutive law were also registered in the range of initial, small loads both in uniaxial compression and
tension of crystalline rocks. Nonlinearity of strain in rocks is manifested primarily in the stress dependency of tangent
or secant elasticity modulus and Poisson’s ratio and is caused by closure, initiation, propagation and linkup of pre-
existing and new microcracks, frictional sliding along cracks, growth of dislocations, etc. Many experimenters and
standardization procedures assume that the dependence of the strain on the applied stress is linear and for practical
calculations only two elasticity constants are used: the tangent or secant elasticity modulus at 50% of the failure load in
compression and Poisson’s ratio at the same stress level. Apart from nonlinearity many rock types and concretes have
quite different stress—strain relations in tension and compression. Yet direct tensile testing is seldom performed because
of its many inherent difficulties. Such unrecognized double elasticity and nonlinearity of rocks can invalidate a stress
analysis, and in addition, produce a meaningless overestimate (or underestimate) of tensile strength based upon the
modulus of rupture derived from a bending test. In Part I of the present study, it is shown that both double elasticity
and nonlinearity have a profound effect on flexural strength of rocks as predicted by application of fundamental
continuum damage mechanics relations and an appropriate technical theory. The proposed theory is validated in Part 11
of this work, in which an appropriate back-analysis procedure is suggested for the characterization of the mechanical
properties of Dionysos marble in the uniaxial tension and compression regime from properly designed three-point
bending tests. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The tensile strength of rock is generally stated to be less than approximately 10% of its compressive
strength. Griffith’s theory predicts that the uniaxial compressive strength of rocks is eight times the uniaxial
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tensile strength, whereas Murrell’s extension of the Griffith criterion gives the value of ratio of compressive
strength over tensile strength equal to twelve (Jaeger and Cook, 1976). Hence, the experimental determi-
nation of tensile strength of rocks is of great importance in current rock engineering practice regarding
prevention of rock failure of underground and superficial works, as well as in structural engineering
practice in which the characterization and residual life prediction of natural building stones used in
monuments and buildings is of overwhelming importance. Despite the importance of the tensile strength of
rock in practice and in connection with theories of failure, direct measurements of tensile strength are
difficult and are not commonly conducted in rock mechanics laboratories. This is because both the bending
stresses or torsion moment (inevitably caused by the eccentricity of machine axial loads) and the anomalous
concentrated stresses (included by an improper connection during testing between the ends of a rock
specimen and the machine caps serving to transfer the tensile loads to the specimen) are frequently un-
avoidable (Barla and Goffi, 1974; Nova and Zaninetti, 1990). Thus, it has sometimes been common practice
to neglect tensile properties or replace tensile properties by compressive properties as an input parameter in
the engineering analysis.

Indirect tests such as beam flexure and diametral compression of discs or annuli have the inherent
disadvantage that a stress—strain relationship must be assumed in order to obtain usable results; the usual
assumption of linear elasticity, with equal moduli in compression and tension, is invalid for many rocks
(Wuerker, 1955; Blair, 1956). Bimodularity or bilinearity of rocks is important in the disc and bending tests,
as well as in the case of underground excavations such as tunnels or other regular and irregular openings in
which tensile stresses may occur.

Long before the above investigators it has been known that certain materials behave significantly dif-
ferently in tension than in compression. For example, this was recognized by Saint-Venant (1864), who
analyzed the pure bending behavior of a beam having different non-linear stress—strain curves in tension
and compression. Specific experimental evidence of bimodularity has been reported for cast iron by Gilbert
(1961), cord-rubber by Clark (1963), polymers by Zemlyakov (1965), concrete by Seefried et al. (1967),
cortical bone by Simkin and Robin (1973), soft biological tissue by Pearsall and Roberts (1978), and
various kinds of rock by Haimson and Tharp (1974). Of course, the specific micromechanisms responsible
for double elasticity vary from one class of material to another; stiff and brittle solids such as rocks,
concrete and ceramics exhibit simultaneous microcrack closure and sliding along microcracks and even
local tensile cracking from tips of fissures at low stress levels in compression, whereas only crack extension
occurs in tension; on the other hand, soft fiber-reinforced materials are weakened in compression by fiber
microbuckling. Haimson and Tharp (1974) have presented linearized uniaxial compression and tension
data indicating that the slope of the line in compression is almost always higher than that in tension. This
ratio of slope in tension to that in compression can in fact vary from 1:1 in very tight rocks, to 1:2 in some
limestones, to 1:20 in weak sandstones, to 0 in no-tension fractured rocks or soils. However, the lineari-
zation of the uniaxial compression curve masks the nonlinearity of rocks at low stress where tangent
modulus increases as the stress increases. Eventually, in uniaxial compression, a stress is reached after
which the curve becomes quasi-linear but the tangent modulus at this stress level is much higher than that at
low stress levels (Walsh, 1965). Thus, deviations from Hooke’s law which are also registered in the range of
initial, small loads in compression must be considered in the interpretation of indirect tension tests in-
volving both extensional and compressive stresses (i.e., bending and disc tests). Irregularity of the stress—
strain behavior of rocks has not been studied so thoroughly in the past, and it is frequently assumed that the
dependence of their strain on the applied stress is close to linear, whereas for practical calculations only two
elasticity constants are used, namely the elasticity modulus and Poisson’s ratio (both constants are usually
defined at 50% of the failure load). Further, load-carrying capacity evaluation based on linear elasticity and
on a maximum extension strain criterion is usually overestimated.

The values of the tensile strength determined from bending tests on rock are often significantly greater
than the tensile strength measured from direct tension tests. It is remarked here that there exist cases where
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the rock tensile strength measured from a bending test may be lower than the respective strength deter-
mined from a uniaxial tensile test. Although this effect was not understood, it was well recognized, and the
term “modulus of rupture” is used for the extreme tensile stress determined from a bending test. Fairhurst
(1961) discussed the effects of different values for Young’s modulus in tension and compression on bending
tests and describes apparatus for four-point bending (4PB) tests. He proposed an indirect methodology for
the estimation of tensile modulus from load-deflection measurements in 4PB and from measurement of
compressive modulus in uniaxial compression. Later Adler (1970), by using the “transformed section”
concept of mechanics of materials, extended Fairhurst’s analysis, which was restricted to prismatic speci-
mens, to employ flexural test results on cylindrical specimens (i.e., drill cores) in determining the tensile
tangent modulus of elasticity and the correct modulus of rupture of bilinear rock materials. However, in the
4PB loading configuration the bending moment, the tensile stress and the bending curvature remain con-
stant in the region between the points of load application. Hence, the crack can start anywhere between
these points. In such a case if the determination of the post-peak behavior of rock is of interest, the use of
unnotched beams may not be the best choice due to this inherent experimental difficulty (i.e., the a priori
unknown position of crack initiation). For example, the use of crack mouth opening displacement control
requires long connecting rods. On the other hand, if a notched beam approach is employed then a larger
number of specimens is required and the analysis of notch effect should be carried out.

Alternatively, in three-point bending (3PB) test both the bending moment and the tensile stress reach
maximum value immediately beneath the point of load application and consequently the crack starts al-
ways at specimen mid-span (note that this statement may not be valid for disordered or inhomogeneous
materials). However, near the point of application of the concentrated load a serious local perturbation in
stress—strain distribution should be expected, and a further investigation of the problem is necessary.
Herein, the classical Bernoulli-Euler technical bending theory is further elaborated by considering the
double elasticity (bilinearity) and nonlinearity due to damage in the tensile regime of crystalline rocks. The
methodology that is used for this development is based on classical analyses followed in the past by Bach
and Baumann (1914), Nadai (1950), Timoshenko (1956) and Marin (1962). The theory applies equally well
for both 4PB and 3PB bending configurations provided that Saint-Venanit’s principle is satisfied, that is the
regions under consideration are at a considerable distance from any place of loading or of support. If strain
measurements are conducted in such places at upper and lower outermost fibers of the beam then the
proposed theory permits one to evaluate the double elasticity of rocks. However, in many cases, such as for
example the 3PB test, we are interested in the state of affairs near to the place of concentrated load, since at
that region the crack starts to propagate. For this purpose, it is demonstrated numerically by employing an
indirect boundary element model that both axial (or longitudinal) and transverse principal stresses reach
very high values in a skin adjacent to the concentrated loading place. It is shown that Stokes’ empirical
formula for the correction of horizontal stresses at beam mid-section as was further corrected by Seewald
(Timoshenko and Goodier, 1970) is in error close to the lower edge of the beam. It is further illustrated that
the nonlinearity of stress—strain relation in uniaxial tension of the material produces a nonlinear dis-
tribution of bending curvature along the axis of the beam. If this bending curvature nonlinearity is mea-
sured during a 3PB bending test then the damage modulus of the material in uniaxial tension may be
deduced in the framework of an inverse procedure. Further, it is demonstrated that neglecting the
bimodularity and nonlinearity of the tensile behavior of britttle rocks may lead to significant overesti-
mation of the load-carrying capacity of rock beams and of uniaxial tensile strength which in turn severely
affect design validity.

The proposed theory is validated in Part II (Exadaktylos et al., 2000) based on 3PB bending experi-
mental data of the well known Dionysos marble that is used for restoration of Acropolis of Athens (Korres,
1993; Zambas, 1994) and it is demonstrated that it constitutes a rational attempt in establishing a simple,
engineering analytical tool quantifying processes occurring in rocks which are subjected to tensile stresses.
It is based on a sound engineering strategy, i.e., to start from simple relations, establish the simplest
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meaningful theory and test it against experimental data in order to prove whether it can be used for the
material in question.

2. Theory of stress—strain properties in bending
2.1. Basic equations of technical bending theory

Herein, for easy reference, the classical engineering theory of beam bending will be outlined briefly. To
fix ideas we consider a simply supported beam of rectangular cross-section under the action of a vertical
load P at its upper surface and at the mid-span. The longitudinal section of the beam is referred to a
Cartesian coordinate system O(x,y,z) positioned on the neutral axis with its origin at mid-span and with the
Ox axis directed along the neutral axis of the beam and the Oz axis extending vertically downwards as it is
illustrated in Fig. la. Further, deformation quantities are assumed as infinitesimal, and the corresponding
displacements of points in a cross-section in x and z directions are denoted by the symbols u, w, respec-
tively, as it is shown in Fig. la.

The kinematic quantities of the axial strains &,,, ¢, and the engineering shear strain y,_, respectively, are
defined as usual

SXX = uaxa 8ZZ = W’Z7 ’))xz = u?Z +W7X b (1)

where partial differentiation with respect to a coordinate x, z has been indicated by an additional subscript
x or z preceded by a comma. The horizontal displacement u along x direction at a given normal section of
the beam, is set linear, i.e.,

u=1yx)z, (2)
where, as it is shown in Fig. 1b, the symbol y denotes the rotation of the normal cross-section. In view of
relationship (2), plane sections are assumed to remain plane. In Fig. 1a z, z, are positive numbers denoting
respectively the compressive and tensile outer fiber distances, H is the thickness (depth) of the beam, B

denotes the width of the beam, and the symbols o,,, 7,. denote the axial and shear stresses, respectively.
Further, the second moment of area of the cross-section of the beam is defined as follows:

BH?
=" 3
B (3)
By setting the bending curvature of the beam as follows:
K=Y, 4)

(a) (b)

“U Il
gllA' |
X‘j:u X

Fig. 1. (a) The geometry of the beam in 3PB and the coordinate system, and (b) components of the displacement (u, w) and deformation

v.
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then from relationships (1), (2) and (5), the axial (longitudinal) component of the strain can be written as
follows:

fu = KZ. )

2.2. Nonlinearity at small and large strains of brittle rocks

The beam material may have arbitrary uniaxial stress—strain behavior in the longitudinal directions, i.e.,
the mechanical behavior of the material in uniaxial loading is represented by a law of the form:

oi(¢) for tension,
g = o.(¢) for compression, (6)
a(0) = 6.(0) =0,

where we have set ¢ = g,,, ¢ = ¢, and o,(¢), o.(¢) are continuous functions referring to uniaxial tension and
uniaxial compression, respectively. Here, the following polynomial relationship is proposed to approximate
the stress—strain behavior of a variety of rock types:

o { oi(¢) = Eie + R&? for tension, (7)

0.(¢) = Ece + be® + c&®  for compression,

with E,, E. denoting the initial tangent moduli in tension and compression, respectively, and F;, b, ¢ being
additional material constants. Thereafter, all strains are taken to be positive numbers unless otherwise
stated. The uniaxial stress—strain relations (6) or (7) are used directly in beam theory by neglecting Poisson-
type lateral contraction effects.

It is worth noting that the detailed analysis carried out by Bell (1984) showed that the first who proposed
the nonlinear (parabolic) law given by the first of relations (7) (with F{ < 0) based on direct tension tests on
steel piano wire was Gerstner, Franz Joseph, in 1824. The results of Gerstner’s tests and the nonlinear law
were published in 1831 in the third chapter of the first volume of his Handbuch der Mechanik. It can be
shown that this uniaxial tension constitutive law can be derived from a simple probabilistic theory for
brittle materials. In such a theory, the stress and strain variables are considered to be random variables. The
random stress is denoted by s whereas the probability density of stress is denoted by f(s). Then, the
nominal stress is the expected mean stress, in the probabilistic sense, defined as follows:

o’t:/j)osf(s)ds:ﬁ(l—D)7 (8)

where @ is the expected value of the nominal stress in the uncracked region (actual stress) that is related to
the strain by a linear law:

¢ = Fe. 9)
In Eq. (15), D is the “damage factor” or “decohesion probability”’, defined as
A—A4
D="" 10
=, (10)

with 4 denoting the initial cross-sectional area of the specimen and 4 denoting the effective (undamaged)
load transmitting area of the cross-section; thus, 4 — 4 is the total area occupied by fissures and micro-
cracks. Prior to formation of the first cracks 4 = 4 and consequently D = 0. In the other limiting case the
working area A can become zero giving D = 1, i.e., 0 < D < 1. In a generalization of Saint-Venant strength
theory, D depends on strain and in a first approximation it can be taken to be proportional to the strain ¢,
namely
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D=-"210(), ()

in which O denotes the Landau order-of-magnitude symbol and F; <0 in order D to be positive. From Egs.
(8), (9) and (11) the parabolic law represented by the first of relations (7) can be deduced. Fig. 2 below
illustrates graphically the first of constitutive equations (7) in direct tension and the damage evolution
law (11).

On the other hand, the most obvious departure from ideal linear elastic behavior to be shown by the
uniaxial compression test is nonlinearity of the stress—strain characteristic both in the beginning of the test
and close to the peak load. The first part of a typical plot of stress against strain for a high-strength
crystalline rock curves so as to increase the slope with increasing stress (Fig. 3, stage I). This curvature
gradually ceases, until at the mid-portion of the plot there is approximate linear proportionality between
stress and strain (Fig. 3, stage II). The initial curvature in Stage I for 0 < ¢ < g;, that is described by the
parabolic relationship o.(¢) ~ E.¢ + be?, b > 0, implies ‘stiffening’ of the rock with increasing stress and is
attributed to the predominant mechanism of progressive closure of cracks and pores under stress. For
¢ = o, the surfaces delimiting microcracks appear to be closed and the value of the tangent elastic modulus
stabilizes in the value of Es, that is also the tangent modulus at 50% of the ultimate stress. This effect has
been analyzed in some detail by Brace (1965), Walsh (1965), and Walsh and Brace (1966). The linear re-
lation of stage II is taken to represent elastic straining of the constituent grains after pore closure has
reached a limit for the particular stress system. In soft rocks, the initial curvature of stage I is not always
measurable. At stresses approaching the uniaxial compressive strength of the rock, the slope of the stress—
strain curve decreases (Fig. 3, stage III). This effect, which also marks the onset of dilation, is associated
with formation of microcracks, which progressively destroy the loading-bearing capacity of the rock and
permit irreversible strain (permanent set) to occur, and is described by the second of relations (7) with
¢ < 0. The uniaxial compression test in a non-stiff configuration culminates when the slope of the stress—
strain curve approaches zero and the unconfined compressive strength of the rock o, is reached.

The cubic law in uniaxial compression represented by the second of constitutive relationships (7) may be
easily derived by postulating that the decohesion probability is dependent on the strain by a parabolic
relation, i.e.,

1
D= (be + c&?) + O(¢?), G = E.e. (12)

Ee

2

154

Axial stress (MPa)

—TF/E,

! igm
0.0002 0.0004 00006 00008 0.001
Axial strain

Fig. 2. Linear versus nonlinear behavior of rock in uniaxial tension regime. The plot of the linear damage law (11) is also graphically
displayed. E, denotes the initial tangent elasticity modulus, whereas oy, &, denote the strength and extension strain at peak stress,
respectively, of rock in uniaxial tension.
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Fig. 3. Typical nonlinear axial stress—strain diagram of a rock in uniaxial compression.

By solving the second of relations (7) with respect to ¢ for the case of ¢ = 0, we derive

. - ~ b
e=6[1 — bo +20%6% +O(6%), G=—, b=-—. (13)
E, E,
The polynomial relation (13) is known as Hartig’s law, proposed in 1893, on the basis of tensile tests on
leather, rubber, metals and clay (Hartig, 1893). Deformation of the type (13) is characterized by the fol-
lowing relationship of the tangent stiffness with respect to stress:

d ~
E:d—:zEc[l+2b&]+O(62), E.<E<Es. (14)

Experimental evidence indicates that for many rocks E, < Es5y, with the moduli ratio E,/E5, varying from
1:1 for very coherent rocks to 1:2 for some limestones, to 1:20 in weak sandstones, to 0 in no-tension
materials (e.g. soils or heavily discontinuous rocks) (Table 1). Hence, with the complete deforma-
tion spectrum, rock stress—strain relationship can be at best simplified into a bilinear curve with point of

Table 1

Tangent elastic moduli in tension and compression (Haimson and Tharp, 1974)
Rock type E, (GPa) E5, (GPa) Es/E, E,/Esy
Westerly granite 17.2 72.4 4.21 0.24
Austin limestone 11.7 15.8 1.35 0.74
Carthage limestone 35.2 63.4 1.80 0.55
Indiana limestone 11.0 26.9 2.45 0.41
Georgia marble 23.4 42.1 1.79 0.56
Tennessee marble 53.1 76.5 1.44 0.69
Russian marble 9.0 20.7 2.30 0.43
Star mine quartzite 75.8 75.8 1.00 1.00
Arizona sandstone 11.7 45.5 3.88 0.26
Berea sandstone 4.1 234 5.70 0.18
Millsap sandstone 0.7 13.1 18.71 0.05
Tennessee sandstone 1.4 16.5 11.79 0.08

Russian sandstone 11.7 57.2 4.88 0.21
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intersection at zero stress and in general the rock is regarded as a “‘bimodulus” material. The assumption of
bilinearity can and should be incorporated in the analytical approach to any problem that involves mixed
stresses at a point. On the other hand, one cannot exclude cases of particular interest in bending of rock
beams where the rock material exhibits a special anisotropy of the form E. < E\.

The above proposed constitutive relationships (7) for rocks can be considered as a generalization of
Krajcinovic’s (1979) model for plain concrete. In this case,

Ec=E=E, F=-—, b=c=0 (15)

with D, denoting the tensile-microcrack-damage modulus (D, > 0) related to Janson and Hult (1977) linear
version of Kachanov (1958) concept of continuum damage mechanics (Bert, 1983). Moreover, the proposed
model in compression expressed by the second of relations (7) is a generalization of Bert’s model (1983) that
is stated as follows:

0.(¢) = Ece + F.e?, F.<0. (16)

The above simple model (16) can be used in a large class of rocks that do not exhibit significant crack
closure in the initial state of unconfined compression loading (that is, stage I is missing).

The strains at which tensile and compression instability occurs can be computed by applying the fol-
lowing instability criterion first proposed by Gerstner in 1832 (Bell, 1984):

‘Z":o, i=tc. (17)
By combining relations (7) and (17), it is derived
E,
Eu = — 2_Ft7
E b=0, (18)

2¢?
bou = _@%’ b£0,
where &, &, are the ultimate strains at which instability occurs in direct tension and unconfined com-
pression, respectively. Note that since both damage parameters are negative quantities then &, &, are
positive quantities (i.e., in accordance to the sign convention employed herein). If the first of relations (18)
is combined with Eq. (11), then the following value of decohesion probability (or damage factor)
Dy = D at ¢ = g, is found at fracture of a rock specimen under direct tension:

D=1 (19)

27

whereas according to Eq. (10), the effective area 4 of the cross-section at fracture is reduced to one-half of
the original. Also, in view of relationships (7) and (18), the predicted tensile and compressive strengths may
be found in the following manner:

_ B
Ot = 4E7
_ %7 bh=0, (20)
Ocu = (s/h2—3cEc+b) (—6cEc+h2+h\/h2—3cEc)
272 b #0.

in which oy, 6., denote the ultimate stress in direct tension and unconfined compression, respectively. Due
to the fact that at stress levels as low as those causing rupture in tension or brittle polycrystalline materials
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(e.g. rocks, ceramics, concrete, etc.), the compressive stresses are not sufficient to cause dilation of rock,
then for most practical purposes the constant ¢ entering the second of constitutive relations (17) may be
discarded in subsequent calculations of beam bending theory, i.e. ¢ = 0.

2.3. Bending of nonlinear materials with different behavior in tension and compression

Next, following the classical method of analysis (Nadai, 1950; Timoshenko, 1956; Marin, 1962) the
longitudinal strains for the outer fibers of the beam are obtained from relation (5) as follows:
&
&y = KzZy, &c = Kz, i:ﬁ7 (21)
6C ZC
where ¢ represents a tensile strain, and ., a compressive one. The strains defined by these relations would
be known if the position of the neutral axis and the bending curvature were known. The kinematic
quantities can be found from the following equilibrium equations of forces in the axial direction and
moments:

/0 oo(2) d + / o (i3)d2 = 0,

= . Iy (22)
/ﬁc Sou(2) d + /O (i) dz =
where it is assumed that the material is subjected to a bending moment M, whereas there is no applied axial
tension or compression. The following dimensionless variables were employed in relations (22):
K =xH. (23)

2:

z
H b
Since 2 = ¥~ '¢ and dz = £~'de, then from the first term of relationship (22), it is obtained
/ o.(e)de = / o(e)de <= / a(e)de =0, (24)
0 0 —é&c
which means than in order to determine the neutral axis of the beam, the total strain 4 = ¢ + ¢, must be

selected so that the areas enclosed by the o—¢ curve and the axis of strains to be equal. Then, substituting
Eq. (7) into Eq. (24) and solving for the compressive strain, it is obtained

N/ m(3+2mge) ey h=0

b = m2+§:nnze| 7 (25)
2mype ’ b 7& 0
in which
E, F b
m=—, me = —, b= 7
Eq E; E; (26)

er = (dmdmee} + 6m>ed — m’ + 2mye (Amimlet + 12m2meel + 9mled — 2m® — 2mem’e)'?)'°.
The asymptotic expansion of the compression strain around infinitesimal tensile strains for » = 0 has the
much simpler form

1 1 me
SczﬁstJrg\/—ﬁSero(SS)- (27)
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Formula (27) may be employed for the experimental evaluation of the parameters m and m; by curve fitting
e.—¢ data from a bending test performed on a low-porosity rock (Exadaktylos et al., 2000).

Further, from the third term of Eq. (21) and relation (25), as well as from the necessary geometric re-
lationship z. + z, = H, we find the relation

= , b=0,
m+\/m(l+%mfs‘)
21; = 1 b 0 (28)
mm—ey)+e2 ? 7& '
1
Tmper it

The series expansion of the first term of the above expression (28) around small extension strains is

v 1 m’? meé€ im2(3—’—7\/’1_1)m82 mee,)’
o vm 3t ymy T8 (m+\/%)3( ré) +O<( “)>' (29)

It can be easily verified from this formula that in the case of mf = b =0, m = 1, then 2, = 0.5, that is to say,
the neutral axis passes through the centroid of the cross-section. Curves showing the variation of 2, with
outer fiber extension strain ¢ for various values of the modulus ratio m are shown in Fig. 4. It may be seen
from the figure that the neutral line of the beam that exhibits damage shifts during the increase of strain to
the concave side of the beam, thus increasing the region where tensile forces act with this increase to be
more pronounced as the modulus ratio increases.

The constitutive relation of M is derived by substituting 2 = #~'¢ and d2 = &' de into the second term of
Eq. (22):

& M
/‘ Jﬁdﬁzﬁﬁz. (30)

&

From the above equation, the constitutive relationship of the bending moment may be deduced

0.60 —
4 m=14
0.58 —|
i 1.2
0.56 —
. 1.0
0.54 —
. 052 — 0.8
<N -
0.50
0.48 — 06
0.46 —
044 —
042 . i . i . I
0E+0 1E-4 2E-4 3E-4

&4

Fig. 4. Graphical representation of the dimensionless tensile outer fiber distance z, with maximum tensile strain ¢ for five values of the
modulus ratio m = E./E; at hand and for m; = —1600, my, = 0.
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12 [
M =Elx, E == / oede, (31)
K —ec

where the symbol E; designates the reduced modulus of the beam. The closed form expression for the
reduced elastic modulus can be found from the second term of Eq. (31) and relationship (7) as follows:

3m{4v/34/ [m(2mpe+3)] +36m2+2Tmpm%e,} b=0
- )

Er = E = {ﬁ\/m(2n1f5t+3)+3m}3 ’ (32)
E, 3mpel+4e; +(m/2)n> +(12/64)myn* b0
((1/2)ﬂ+81)3 ’ )
where we have put
2 2
m e; —me
g e —mer -

mpe|

Obviously for o = Ee¢ and ¢, = ¢, we get E. = E. The following asymptotic value of the dimensionless
reduced modulus £, corresponding to the linearized uniaxial compression model (b =0) can be also derived:

-~ 4m 3m? 5m*(y/m+1
. S+ A L LR Y O((mz)'), my=0. (34)
(L+m)®  (ym+m) 3 (m+m)
It is rather obvious that for the case m; = 0 the above formula takes the simple form given by Timoshenko
(1956),

A 4

Bo=—"" m—0, m=0. (35)

(14 /m)

As it is noted by Timoshenko (1956), the above modulus is sometimes used in calculating the buckling load
of a column compressed beyond the proportionality limit of the material. The first who proposed this
formula was Engesser (1895). The dependence of reduced modulus on the extension strain at outer fiber is

illustrated in Fig. 5 for five values of the modulus ratio at hand and for a damage parameter m; = —1600.
1.2 —
~m=14
11 — 12
1.0 70
<uT ]
09 0.8
0.8 —
. 0.6
0.7 —
06 I L
0E+0 1E-4 2E-4 3E-4
&

Fig. 5. Dependence of the dimensionless reduced modulus £, on the tensile outer fiber strain &, for five values of the relative modulus
ratio at hand and for m; = —1600, my, = 0.
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Fig. 6. Relation between dimensionless bending moment M and tensile outer fiber strain & for various values of the tangent modulus
ratio m and for m; = —1600, m;, = 0.

As it was intuitively expected the modulus of elasticity of the beam decreases as the strain and consequently
the damage of the beam increases.

Thereafter, by recourse to relationships (31) and (32), the following formula is obtained for the bending
moment:

u { {4\/§ [m(2mge, + 3)]° + 36m? + 27mfm281}81
M = — = — s
EH?B 12 {V3/mQ2mee, + 3) + 3m)’

The asymptotic expansion for the normalized bending moment around small values of ¢ reads as follows:
N m*? 4+ m? 1 (4m?? +3m?) 2 (m?? 4+ m*)\/m
Mz(i)zgt 1 2)——( )\3/_ mee; + O(e)). (37)
3(y/m + m) 4 (m+m) 9 (Vm+m)

The dependence of bending moment on outermost extension strain for various values of the modulus
ratio m and for m; = —1600, m, = 0 is illustrated in Fig. 6.

It is of importance to determine also the bending moment and the extension strain for which the bottom
fiber ceases to support tensile stresses. As it has been proposed by Bert (1983), as well as Bert and Kumar
(1980) the critical tensile strain for bending instability, &,, can be found by applying to relation (36) the
following instability criterion:

b=0. (36)

dm

P 0. (38)
For the specific case of m = 1, it may be shown that

ey = —Imi', b=0. (39)

The above value of the critical tensile strain should be compared with that given by the first term of
relation (18) depicting the failure tensile strain in direct tension. This comparison reveals that the critical
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strain for bending rupture that is calculated by the bending failure criterion is 1.6 times the critical tensile
strain calculated by Gerstner’s uniaxial stress instability criterion (17). In the more general case of a bi-
modulus rock, the following asymptotic relationship holds true:

iﬂ ~ 1.6 — 0.099(m — 1) +0.061(m — 1)* + o((m - 1)3)7 b=0. (40)
“tu

The above simple formula (40) explains the higher tensile strains at the instant of failure that have been
found in Laws (1981) from 4PB tests than those from direct tension tests of asbestos cement and a special
composite material.

In addition, the ultimate bending moment, My,, calculated according to failure criterion (38), is always
higher than the ultimate moment, M,,, calculated according to the uniaxial stress instability criterion (17),
such that the following asymptotic relation is valid:

Mbu

tu

~ 1.1456 — 0.0281(m — 1) + 0.01675(m — 1)* + o((m - 1)3), b=0. (41)

The interpretation of the above formula (41) is that structural damage to the beam (measured distortion
of the beam as a whole) subjected to bending moment may not occur until the moment reaches a value
sufficiently large to cause fracturing not only in the most-stressed outer fiber of the member but in the fibers
to a measurable depth of the beam.

As a next step the expression which gives the variation of the bending curvature along the longitudinal
axis of the beam (i.e., x axis) is studied based on the stress—strain relations in tension and compression. For
this purpose we integrate the second term of Eq. (22), using relationships (7) for ¢ = 0, and we derive the
following nonlinear constitutive relationship for the bending moment:

M =& + mz)ic +3(mez} — mp2) 2, (42)

where the normalized moment in 3PB configuration is given in terms of the normalized load by the relation,
(43)

Solving Eq. (42) with respect to kK and employing also relation (43), the following expression for the di-
mensionless bending curvature is obtained:

L
55
(44)

[\

k(%) = e [2(m2§ +2) - \/4(m21c‘ +2) + 18?(}2"‘%)(”/“‘2? - mbé‘c‘)]; 0<x<

On the other hand, for the linear elastic material (i.e., mf = my, = 0), the following simpler expression is
derived by solving Eq. (42) with respect to k:

P(t+4
<23>3’ 0<£<£ (45)
22+ m(l —2)]

. 3
K(x)—i \2B
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Fig. 7. Variation of bending curvature at failure with distance from centre of beam in the 3PB test for various values of modulus ratio
at hand and for m; = —1600.
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Fig. 8. Distribution of bending curvature at failure along the semi-length of the beam in the 3PB test for various values of damage
parameter my and for m = 1.

Of special interest is the dependence of the ultimate bending curvature at failure denoted herein by the
symbol x, on the modulus ratio m of the rock and on the damage parameter m; in the constitutive behavior
of the rock in uniaxial tension. Figs. 7 and 8, respectively, illustrate the variation of x, along the semi-length
of the specimen in 3PB for various values of m at constant my, and for various values of m; at constant m.
From these diagrams, it is observed that the ultimate curvature is significantly influenced by my, whereas it
is slightly affected by the modulus ratio m.

This observation suggests that the damage parameter can be evaluated from measurements of the
bending curvature at mid-span of the 3PB specimen at the instant of failure.
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3. The local effect of concentrated force in 3PB

The problem of stress distribution in a beam subjected to the action of a concentrated load is of great
practical interest and cannot be discarded in the development of a technical theory. At beam sections which
are sufficiently far from the central section, in such a way that Saint-Venant’s principle is satisfied, the stress
distribution is obtained with satisfactory accuracy by the usual Bernoulli-Euler kinematic assumption.
Near the point of application of a concentrated force, however, a serious local perturbation in stress dis-
tribution should be expected, and therefore the detailed elastic solution is necessary. A similar remark has
been made by Love (1927). Also a matter of special interest is the relation of the actual maximum bending
stress in 3PB with the respective stress predicted by the Bernoulli-Euler technical theory. This is because the
correct relationship between the maximum extensional strain and maximum bending moment in 3PB is of
great importance in engineering applications.

In order to illustrate the effect of the localized centrally applied force on the upper straight edge of the
beam, or the so-called “punch effect”, the distribution of the axial (or longitudinal) and transverse stresses
along the height of beam at the central cross-section (also principal stresses since due to symmetry
T, = T = 0) were computed numerically by employing the displacement discontinuity technique (DDT)
(Crouch and Starfield, 1990). The material model that it was employed was that of a linear elastic (i.e.,
m = 1), isotropic and no-damage material (i.e., m; = 0) and the beam geometry was prescribed by L = 0.38
m and H = 0.10 m. The distributions of the principal stresses along the height of the beam displayed in Fig.
9 agree qualitatively well with those presented by Coker and Filon (1957), however, it seems that the
photoelastic experiments did not capture the abrupt absolute increase of both compressive principal stresses
in a thin skin adjacent to the loaded part of the beam. The transverse principal stress o.. reaches the value of
the externally applied stress at the surface of the beam and quickly dies away to a negligible quantity. The
symbol Z in Fig. 9 denotes the distance of the point under consideration from the centroid of the beam.

It can be shown that near to the place of load application and at mid-section the stresses may be ap-
proximated well by the solution of uniform normal loading ¢, over a strip of length d of the edge of a half-
plane (Muskhelishvili, 1963):

S
E
IN
| w— Axial stress, DDT
207 — Transverse stress, DDT
30 | 4  Axialstress, Half-plane
40 ] X Transverse stress, Half-plane .
%0 II'I'I'I'I'I'I'I'I"I
-100-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10

Stress (MPa)

Fig. 9. Plot of vertical distribution of axial and transverse stresses predicted by the DDT model for an applied stress at the upper
central region of beam of gy = —100 MPa that is equivalent to a load P = 0.008 MN. Compressive stresses are considered to be
negative quantities. In the same plot the half-plane solution (46) is also displayed for comparison purposes.
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o= % larctan {— E+H/2) , = 1} + arctan {— E+H/2) , 1] + ( 2z+H/2)d

(40)
Z+H/2 Z+H/2 2(z+H/2)d
a:z:@ arctan[—(ZjL—/),—1]4—arctan[—(ZjL /),1}— (z+ /2) ,
" d d E+H/2) +d
in which ¢y = —100 MPa, d = 0.8 mm, H = 0.1 m for the example under consideration, and the two-

argument function arctan (y,x) computes the principal value of the argument of the complex number x + iy
so that —n < arctan(y,x) <. From the plot of Fig. 9, it may be seen that the transverse stresses that
are predicted by the half-plane solution (46) are in very close agreement with the respective stresses de-
duced by the numerical solution of the DDT model along the whole cross-section. The axial (longitudinal)
stresses of the half-plane solution compare well with DDT prediction for very small distances from the
upper edge of the beam and then quickly attenuate to reach the zero value.

On the other hand, the axial stress distribution along the central section of the 3PB beam can be cal-
culated by recourse to the following formula due to Timoshenko and Goodier (1970):

grm _ 12P (L H\ N P N 2P (472 3z (7)
==l Z2t—t+t—=| =" |-
™ BH3\4 2n nBH  nBH \ H® 5H

It is also interesting to observe from Fig. 10 below, which is a detail of the axial stress distribution along
the central section shown in Fig. 9, that the neutral axis of the beam is located slightly above the middle axis
due to the ‘punch effect’, which is in agreement with Frocht’s photoelasticity results (Frocht, 1957). In
Appendix A, it is shown that from the first of relations (46) one may find that the asymptotic value of the
parasitic axial force N* that is produced from the axial stress ¢, is given by the relation,

N*m—z—?d+0(d3). (48)

By recourse to the above relationship, as well as the following formula that depicts the tensile outer-fiber
distance z, of a linear elastic material in the presence of axial force:

! Bernoulli-Euler
: —A— Timoshenko & Goodier
‘ DDT

Neutral axis

z(mm)
o
|
o
C

4 3 2 4 0 1 2 3 4 5 6
Stress (MPa)

Fig. 10. Detail of the axial stress distribution along central cross-section of the beam obtained from DDT analysis displayed in Fig. 9.
The thick line represents the exact solution whereas the line with triangles corrersponds to Timoshenko’s solution (47) and the thin line
to the linear approximation of elementary beam theory described by the first term of Eq. (50).
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H N H
2=t g~ 7 T O, (49)
it is demonstrated that the shift of the neutral axis is of the order of the width d of the strip where the
external load is applied. This is also clearly shown in Fig. 10. Furthermore, as can be also observed from
Eq. (47) and Fig. 10, the axial stress o,, does not follow a linear law, whereas at the lower fiber where
the maximum tensile stress occurs, its value is higher than would be expected from the elementary beam
theory.

Next, based on the above results, we attempt a comparison between the numerical model and the
Bernoulli-Euler and Timoshenko’s propositions of distribution of axial stresses. It is proved in the
mathematical theory of elasticity that in the region of pure bending of a unique modulus or linear material
(i.e., m = 1) the exact stress state is given by (Frocht, 1957):

olom = ? 0.=0, 1.=0. (50)

On the other hand, Timoshenko proposes the following more accurate formula that has been derived by
Seewald (1927) for the correction of the maximum tensile bending stress in 3PB test configuration by taking
into account the geometry of the beam:

I\
fs=1 _0'177(ﬁ> atz=H/2, (51)
in which
S
o
_ On 52
elem
s = (52)

XX

with the subscript ‘S’ denoting Seewald’s prediction for the value of axial stress at bottom fiber at mid-
section of the beam. On the contrary, based on the numerical DDT linear elastic model the following best-
fit formula has been derived for the range of length over height beam ratios 1 <L/H <20

I\ L\ 2 L\ I\
=1 . — —0.842( — —-32 — 24 —
o= 10 076( 1) " —osa(£) " s2es(£) (L)
DDT

(%)51 atz=H)/2, (53)

Boor =
elem *
GXX

+0

The predictions of the above two correction formulae for the bending stress at the bottom fiber of the beam
at its mid-section have been plotted in Fig. 11.

Hence, by using the DDT numerical model, it was demonstrated that Seewald’s formula underestimates
the maximum tensile stress, probably due to insufficient asymptotic analysis. Timoshenko’s less accurate
formula predicts that the local effect at the bottom beam edge is equal to —0.508 P/H, whereas Seewald’s
more accurate formula (47) gives —0.266 P/H. However, the predictions of the numerical model show that
Bernoulli-Euler formula is very accurate if the depth of the beam is small in comparison with its length. For
example for length:depth ratio equal to 14, the error of the Bernoulli-Euler technical theory is less than 5%.

The distribution of axial strains at the central section of the beam is also of special interest both for the
prediction of failure load in the former case and for the correction of beam deflections in the latter case. For
an isotropic material that exhibits linear elastic behavior, the axial and transverse strains are related to the
stresses o, 0.. by the following well known plane stress formulae, respectively,
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Fig. 11. Comparison of the ratio of maximum bending stresses f; = ¢’ /o™, (i = S, DDT) at bottom edge of the mid-section of the

xx o

beam in 3PB derived from Seewald’s approximate formula and from the DDT numerical solution.

L‘ [O-xx - VO—zz]?

Exx E,
- ELl [Jzz - vaxx]

B (54a)

&2z

From the above relation (54a), it may be seen that if va., > a,, in the upper part of the face of the beam then
an extensional axial strain will occur since both stresses are compressive in that region.

A plot displaying the distribution of normalized axial strains (E¢,,) corresponding to various Poisson’s
ratios of a linear elastic rock material and calculated by using the first relation (54a) for the model example
presented above is shown in Fig. 12. From the figure, it is noted that for values of Poisson’s ratio above 0.25

Z (mm)
I

20 —

30 —

40 — Em—

50 T
-40 -30 -20 -10 0 10 20
Normalized axial strain

Fig. 12. Distribution of axial strain along the height of the beam of L/H = 3.8 and for P = 0.008 MN at mid-span for four values of
Poisson’s ratio at hand.
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the axial strain at mid-span is tensile almost along the entire height of the beam. On the other hand, it may
be shown that the tranverse strains ¢., along the height of the beam are always compressive. Therefore, the
moduli of elasticity in tension and compression may be derived from back analysis of measured axial and
transverse strain measurements at mid-section of the 3PB beam assuming that the stresses are given by the
isotropic theory. In this case, the following bilinear formulae may be applied for the computation of strains
that match better the experimental results:

— 1 Y
Exx = E I:O-xx m O-zz:I7 }’ (54b)

&z = %C [azz - Vtmo-xx]

where v, v, are the Poisson’s ratios in uniaxial tension and compression, respectively.

Another remark of practical importance that can be inferred from Fig. 12 is that for most types of rocks
which are characterized by Poisson’s ratios in the range 0.25-0.35, Gerstner’s (dg/de¢) failure criterion is
possibly valid in the 3PB configuration. In other words, the maximum tensile strain in bending should
coincide with that in uniaxial tension. This is because for this range of Poisson’s ratio the central cross-
section of the beam is under extension almost along its full length. This remark is in contradiction with the
much higher failure strain predicted by the (dM/de) failure criterion proposed by Bert and Kumar (1980)
(for example see relation (40)). As it is demonstrated in Part II of this work, the only way to investigate the
applicability of these two failure criteria is by means of appropriate experiments.

4. Prediction of failure load and modulus of rupture of nonlinear rocks exhibiting different behavior in tension
and compression

Next, we proceed to the estimation of the critical bending failure loads in 3PB which are predicted by the
present nonlinear and Bernoulli-Euler linear technical theories, respectively. Solving Eq. (42) for load P at
mid-span (i.e., X = 0) based on relation (43), substituting the value of the normalized bending curvature
K = & /%, and further assuming that my, — 0, it is obtained

A48E (1., m ) 1 . N
B = LHl {3[Zf+2t(121)3}+4(mf8f)zt2}3f’ my = 0; x=0, (33)

where P; denotes the failure load in 3PB and & the maximum extension strain at failure. In the first place,
we would like to derive a formula for the ratio of failure load predicted by the nonlinear-bimodular ma-
terial model over the failure load predicted by a linear, unique-modulus material model. It can be shown
that the failure load P; in the framework of the linear theory (m = 1) is given by the relationship,

 8EJ

a7

&f, m=1. (56)

In a conservative beam design & could be taken equal to the value of critical strain &, obtained from
Gerstner’s failure criterion in pure tension. By observing from the first term of relationship (18) that the
present material model predicts at failure Dy = —meer = 1/2, then by dividing by parts relationship (55)
with (56), the following dimensionless failure load is obtained:

1 13,
l+m é—tfl *Z Zt’ mb:0. (57)
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Finally, by substituting into Eq. (57), the value of the dimensionless tensile outermost distance z; as it
given by the first term of Eq. (28), it is derived

§_|_§ Lm
AL T -——) (58)

(e

For the case of m =1 or E. = E|, the above formula predicts

1 2
V== —104/= | = 0.

i.e., the linear technical bending theory overestimates the failure load approximately by 41% with respect to
the maximum load that can be endured by a nonlinear rock exhibiting damage.

From Eq. (58), it can be found that the limit of the dimensionless failure load as the modulus ratio m
approaches the zero value, is zero, i.e.,

lil’I(l) =0, (60)
whereas the respective limit as the modulus ratio tends to infinity
5
lim A" =-. 61
i T (61)

Fig. 13 presents the dependence of the dimensionless failure load in 3PB on the tangent modulus ratio
that is depicted by relation (58) for a material that obeys a parabolic law in pure tension and linear law in
unconfined compression. In the same plot the asymptotic value of the failure load for m — oo or E; — 0, as

1.3 —
. (M=) o
1.2 —
1.1 —
Linear elastic
(m=9.3)

*
Dimensionless failure load, 7u

0.5 T

[ T 17T T "T 7177171
0 2 4 6 8 10 12 14 16 18 20
Dimensionless modulus ratio, m

Fig. 13. Plot of dimensionless failure load A" = P;/P; in 3PB versus the dimensionless modulus ratio m = E./E|.
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well as the value for the unique-modulus-nonlinear material is illustrated with dashed lines. Note that the
linear elastic case (1" = 1) corresponds here to a modulus ratio of

24

_81(17+4\/i§) ~ 9.310. (62)

m

The important conclusion that is drawn from the above diagram is that the “actual” failure load pre-
dicted by the proposed nonlinear theory is always lower than that predicted by linear, unique-modulus
theory for 0 <m <9. Since rocks frequently exhibit double elasticity (Table 1) and nonlinearity due to
damage evolution, failure to evaluate the possible differences between the compressive and tensile elastic
properties, as well as nonlinearity of rock manifested in the uniaxial tensile regime can severely affect design
validity. Finally, the following relation may be found for the dimensionless failure load as a function of
ratio m and ultimate value of the damage Dy:

2—§Df+Lm\3/1—ng
PR SRR T R} (63)
(e

Next, the “modulus of rupture” defined as the tensile stress in the outer fiber at failure and calculated by
beam theory, is frequently used in place of the tensile strength because of the difficulty of direct tensile
testing (Obert and Duvall, 1967). The equation that gives the modulus of rupture is

o= 2= (64)
where gy, denotes the modulus of rupture and f, the correction term in case of punch effect in 3PB treated
in Section 3. It is to be emphasized that the value obtained by use of Eq. (64) which neglects the double
elasticity of materials is not a true strength value; it is just an index of moment-carrying ability expressed in
units of force per unit area. It is worth noticing that the clear disagreement of the values of the ultimate
tensile stress in bending and in tension was first observed in the testing of concrete. More than a half a
century ago, Gonnerman and Shuman (1928) published results of tests indicating very conclusively that the
maximum tensile stress in concrete at rupture in pure tension and pure bending are not even close. Jaeger
and Hoskins (1966), on the other hand, have compared the values of the direct uniaxial tensile strength of
three different rocks with values obtained from 3PB tests. These values are displayed in Table 2. It may be
seen from the table that the tensile strength values obtained from the 3PB tests — that involve non-uniform
stress distribution — are almost twice as great of the values referring to the direct tension tests. Experimental
results of Brooks and Neville (1977) referring to the variation of ratio of bending to direct tension strength
with the tensile strength of dry concrete are displayed in Fig. 14.

The above experimental results presented in Fig. 14 and Table 2 clearly demonstrate that neglecting the
properties of the rock in uniaxial tension, as it happens customarily in current mining and rock engineering

Table 2
Comparison of tensile strengths of three rock types measured from direct and indirect tensile tests (Jaeger and Hoskins, 1966)
Rock Ocu/ 0w Uniaxial tensile 3PB strength (MPa) Tensile strength ratio
strength (MPa)
Carrara marble 13 6.9 11.8 1.71
Gosford sandstone 13.5 3.6 79 2.19

Bowral trachyte 10.9 13.7 252 1.84
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Fig. 14. Experimental results pertaining to the variation of tensile strength ration u on the uniaxial tension strength of dry concrete
(Brooks and Neville, 1977). The predictions of the proposed nonlinear theory and of Krajcinovic (1979) and Bert and Kumar (1980)
are displayed in the same figure.

design practice, is not only wrong, but also it may result in significant errors in evaluating the true tensile
strength properties of rocks from a bending test.

According to Gerstner’s (do/de)-failure criterion for uniform axial tension leads to the first term of
expression (20) for ay,. Thus, by putting M = P;L/4 into relationship (64) for the 3PB configuration,
substituting the value of the failure load P as it given by relation (55) and dividing with the value of ay,
given by the first term of relation (20), we deduce

syd /2
_Om_ P RatE 0, (65)

_O'tu_(l—Df) <1+\/%)2 , My

In Fig. 15, the variation of the relative moduli of rupture on the modulus ratio computed by virtue of Eq.
(65) and for Dy = 0.5 (i.e., Gerstner’s failure criterion) is graphically displayed.

For the specific case of linear material (m = 1) and for f = 1, Dy = 0.5 (i.e., for the infinitely long beam)
the above formula (65) gives

M_%<11—10\/§> =142, m=1. (66)

The above value of the strength ratio agrees with the value deduced by Krajcinovic (1979) who also
employed the (do/de)-failure criterion. It is worth noting that the difference in the relative modulus of
rupture in pure bending and pure tension is fully recognized by the ACI Code for concrete. According to
ACI Standard 318-71 (1970)

p=15 (67)

It is mentioned here that the special technical committee of the European Committee for Standard-
ization (CEN) CEN/TC 246 for “Natural Stone Test Methods™ does not consider the aforementioned
difference in bending and uniaxial tension that is exhibited by natural stone materials. It can be easily seen
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Fig. 15. Dependence of tensile stress ratio on the elasticity modulus ratio computed by relationship (65) for f = 1 and Dy = 0.5. In the
same plot, the variation of the outermost tensile distance at failure on the modulus ratio is also illustrated.

that the limit values of the relative modulus of rupture given by relationship (65) for D; = 0.5, m — 0 and
m — oo (no-tension material), respectively, are given by the formulae,

limu=0,  limu=2.56. (68)

Finally, Bert and Kumar (1980) by using a failure criterion of the type dM/de have found the following
tensile strength ratio in the case of single-modulus material (i.e., m = 1)

1= 1.63. (69)

Finally, by recourse to the proposed theory it is demonstrated in Fig. 14 and Appendix B (the data
presented at Table 3 have been used in Fig. 14) that the experimental data of Brooks and Neville (1977)
may be predicted very well for m = 1 and my, < 0, i.e., by considering that the concrete exhibits damage in

Table 3

Model predictions pertaining to the dependence of the strain ratio &, position of neutral axis z, and strength ratio x on the value of
damage parameter D, in compression. The last column are the experimental tensile strength of concrete specimens (Brooks and Neville,
1977)

D, € 2 H ow (MPa)
-0.01 0.81873 0.54983 1.42353 1.16146
—-0.05 0.828 0.54705 1.44876 1.39859
—0.1 0.84038 0.54337 1.48322 1.695
—-0.15 0.85375 0.53945 1.52144 1.99141
-0.2 0.86831 0.53524 1.56414 2.28781
—-0.25 0.88425 0.53071 1.61224 2.58422
-0.3 0.90188 0.5258 1.66698 2.88063
-0.35 0.92157 0.52041 1.73005 3.17704
-0.4 0.94388 0.51443 1.80384 3.47344
—-0.45 0.96961 0.50772 1.89193 3.76985

-0.49 0.99346 0.50164 1.9764 4.00698
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compression regime as well. It should be mentioned that the predictions proposed by Krajcinovic (1979)
and Bert and Kumar (1980) for the same set of data are given by relations (66) and (69), respectively.

5. Concluding remarks

A technical beam theory based on Bernoulli-Euler kinematic assumption was developed for rocks ex-
hibiting a polynomial nonlinear stress—strain behavior that is different in the tensile and compressive re-
gimes. Distinction is made between two types of nonlinearity, namely:

e one that occurs in the small strain regime and corresponds to the transition region between the tension
and compression linear portions of the stress—strain curve — herein referred as “double elasticity” and
may be realized as a special type of anisotropy — and

¢ another that occurs at sufficient large strains due to damage of the material manifested by initiation and
propagation of cracks in the tensile regime, or due to consolidation of porous material in the initial
stages of compressive loading.

Since the correct relation between the maximum extensional strain and maximum bending moment in
flexure is of great importance in engineering applications, we propose a correction for the maximum
bending stress at the central section of a beam subjected centrally to the action of a concentrated load.
Further, it is shown that above some value of Poisson’s ratio the central section of a beam in 3PB is under
extension almost along its full length, therefore Gerstner’s (do/de) failure criterion should be applied in this
testing configuration rather than the (dM /de) criterion that predicts higher ultimate bending stress. It is also
shown that the lengthwise distribution of bending curvature is nonlinear with a peak value at mid-span for
the case of 3PB; this peak value of the bending curvature depends both on modulus ratio m and damage
parameter mi; in the tensile regime and formulae are displayed for the computation of the damage pa-
rameter from measurements of bending curvature at the central section of the beam for known modulus
ratio m.

Since rock frequently displays double elasticity and damage, failure to evaluate the possible differences
between the compressive and the tensile elastic properties, as well as the nonlinearity in the uniaxial tension
regime can severely affect design validity. Yet this is what has frequently occurred in rock mechanics, where
due to the inherent difficulties of direct tensile testing, the tensile modulus of elasticity is often assumed to
be equal to the compressive value (i.e., it is assumed that m = 1). An important conclusion that is drawn
from this work is that the actual failure load predicted by the double elasticity-nonlinear theory is always
lower than that predicted by the linear theory for 0 <m <9.3.

Further, it is illustrated that the bimodularity of quasi-brittle materials may result in the variation of the
ratio of modulus of rupture over the tensile strength in the range of 0-2.5. Thus, failure to evaluate properly
the possible differences between the compressive and tensile elasticity of rocks, as well as nonlinearity of
rocks in the uniaxial tensile regime can severely affect the design validity.

Finally, it is demonstrated that the consideration of nonlinearity of concrete in both the compression
and tension regimes leads to an expression for the ratio of modulus of rupture over the tensile strength as a
function of the tensile strength that is in accordance with published experimental data.
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Appendix A

The axial force N* that is produced by the axial stress ¢¢. may be found as follows:

H
we [ A
0
where we have set the dimensionless variable,
z4+4
*— A2
2= (42)

By inserting into Eq. (A.1) the value of the axial stress as it given by the first term of Eq. (46) and per-
forming an asymptotic analysis for very small values of d, we obtain

_ 24
TC

N* ~ d+0(d%). (A3)

Also the bending moment M* generated by ¢} may be found from Eq. (A.3) to be

M =N g ~ O(d)qo. (A4)

The position of the neutral axis of the linear elastic beam characterized by a modulus of ¢lasticity E, may be
obtained from the first term of equilibrium relation (34) by putting in the right-hand side the axial force that
is produced by the concentrated load

0 Zt
/ Escdz—i-/ Eedz=N". (A.5)
- 0

Zc

Finally, by substituting in the left-hand side of Eq. (A.5), the approximate expression of N* as it given by
Eq. (A.3), putting z. = H — z, and solving for the value of the tensile outer fiber distance z;, we deduce

H
a5 + O(d). (A.6)
Appendix B

The maximum compressive strain may be found from the equilibrium of axial forces described by Eq.
(24)

/Oscoc(g)ds:/os‘ o(e)de /_iia(g)dg_o. (B.1)

Application of constitutive equations (7) into Eq. (B.1) and making the necessary integrations and algebraic
manipulations the following equation is derived:

& +—e — {—er—at}afzo, (B.2)
m m

where we have employed the non-dimensional variables as they are defined by Eq. (26). The above cubic
Eq. (B.2) may be put into the form:
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D& +%m§2 — (% —Dt> =0,
(B.3)

&
DC = Mp&y, &= _C7 Dt = —M¢é&.
&t
If D. < 0 (or my, < 0 since all strain quantities are considered positive) then the material exhibits damage,
whereas in the opposite case (i.e., D, > 0) the material exhibits stiffening, upon compressive loading. The
discriminant of the above cubic equation is

Dis = % (3 —2D,)(2D2D, — 3D + ). (B.4)

The cubic equation (B.3) possesses three real roots (with two of them equal) provided that its discriminant
(B.4) is positive. The two equal roots that are also the answer to our problem are given by the relation,

E——L +m—2+2m
- 4DC q q )

(B.5)
g= \3/ 6D2 — AD2D, — m* + 2D\ [9D2 — 12D2D, — 3m* + 4DZD} + 2Dy

In order to check the validity of the proposed model to predict the experimental results of Brooks and
Neville (1977), we have estimated the value of strain ratio € based on (B.5), and on the ultimate value of
D, = 0.5 for m =1 and for D, ranging from —0.01 to —0.49. Then we have assumed a one-to-one corre-
spondence of the damage parameter in the compression regime, D., with the ultimate tensile strength of
concrete specimens as it is illustrated in Table 3. The values of the position of the neutral axis and of the
bending strength ratio have been subsequently calculated by recourse to the methodology proposed in
Sections 2.3 and 2.4 respectively, i.e.,

.1
t e B.6
g1 =) =B £ m(1 =2)') 27 D&+ D1 =2) (1 2 ~ 2 (B0
—DE + De(1 - 2) 4 [-D& + De(1 - 2)°)
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